Photo File – Twins of the Adriatic

By me
All photos me too, copyrighted

Even though light aircraft had remained faithful to Croatian airports all throughout the corona crisis – so there was always something to see wherever you went – the recent and quite sudden upsurge in tourist traffic had brought them back in numbers unseen even in record-setting 2019. From Pula (PUY/LDPL) at the top of the coast to Dubrovnik (DBV/LDDU) at its bottom, throughout July 2021 I was spoiled for choice on any GA apron, and more than once did not know where to actually start photographing (a #firstworldproblem if there ever was one). Homebuilts… turboprops… bizjets… touring… STOL… medevac… everywhere you went there was always something for any taste.

I, however, decided to indulge in a particular fascination with piston twins (a summer fling?), of which there were so many that I could easily devote an entire article to them – and, in fact, am doing right now. And while just a handful of them could be considered truly rare and interesting – even by Croatian standards – they should nevertheless make for a fun read for any GA nut!

An interesting airplane, a fine background and an electrically-assisted bike to get around the apron… the GA-loving Dash Driver’s summer vibe! And although it is not actually part of the this work (the covers ruin it for me), I can still tell you that this is a mint 1975 Partenavia P.68B Victor with the serial 00035, one of the many designs penned by brothers Luigi and Giovanni Pascale – the same duo that would later go on to found (and still run) the more famous Tecnam works

1. Piper PA-44-180 Seminole • F-GBPK

The first machine off the line may be the most common of the lot – but for reasons I can’t quite explain, I have a soft spot for Seminoles, particularly mint and sweet examples such as this one (though my colleagues were quick to point out that “sweet Seminole” is like saying “enjoyable tropical disease”).

Before taking selfies on the one on the left, you first need to leave a lot of sweat on the one on the right. While much maligned by students for its wheezy single-engine performance, lack of creature comforts and very many quirks, the Seminole is a real anvil of an airplane underneath, and can take so much abuse that a lesser aircraft would long before split in half. That said, having done my Multi Engine training on a nearly identical 1978 example, I was quite surprised at how potent the design becomes when fitted with a pair of turbos, with the 1982 Turbo Seminole I did my recurrents in feeling like a proper rally version!

Manufactured in 1979 under the serial 44-7994308, F-GBPK is seen here roasting at Split Airport (SPU/LDSP) after completing stage 2 of an epic trans-mediterranean journey that will see it cover everything from France to Croatia to Greece to Morocco to the Azores, before legging it back home across the entire width of the Iberian peninsula*. Having previously flown for the Aeralp flight school of Grenoble, F-GBPK sports a comprehensive avionics setup, including the Garmin G500 glass cockpit system, twin Garmin GNS430 moving-map GPS units, a King KRA10 radio altimeter, and a full suite of backup analogue IFR instruments – all of which makes for far more relaxing long-range flight!

* as originally planned, the whole itinerary reads: Grenoble (LFLS) – Bologna (LIPE) – Split – Ioannina (LGIO) – Heraklion (LGIR) – Megara (LGMG) – Kefalonia (LGKF) – Valletta (LMML) – Pantelleria (LICG) – Palermo (LICJ) – Olbia (LIEO) – Menorca (LEMH) – Malaga (LESB) – Fes (GMFF) – Agadir (GMAD) – Lanzarote (GCRR) – Tenerife Nord (GCXO) – Madeira (LPMA) – Cascais (LPCS) – Biarritz (LFBZ) and then home. At the time of writing, the aircraft had reached Tenerife, roughly 3/5ths of the way in (with a tech stop on Corsica for some maintenance)

A simple, elegant and clean scheme that makes it look far younger and crisper than it actually is. An interesting detail are the three-bladed props (unusual on naturally aspirated Seminoles), which briefly gave rise to the hope that it could be another Turbo model…

2. Piper PA-34-200 Seneca • F-BTMH

No. 2 on the list is another “Frenchie Piper” – but this time one considerably rarer than the Seminole. Even before you look at its serial 34-7250135 – which denotes it as the 135th PA-34 made in 1972 – you’ll note the square windows, the square engine nacelles and the two-bladed props, and immediately recognize it as The Daddy: the first ever Seneca model to go into series production…

The fresh paint job may fool the eye initially… but the angular design quickly gives it away! Made a beeline for it immediately, despite much bizjet eye candy in the background…

As the only Seneca variant to be powered by naturally aspirated engines (Lycoming IO-360s with 200 HP apiece), and sporting a limited payload of just 1,356 lbs | 615 kg (of which 590 lbs | 260 kg is fuel with full tanks), this model was neither overly efficient nor a spirited performer, particularly when on the heavy side and at high ambient temperatures. Quickly surpassed by the more capable turbocharged Seneca II and then the 220 HP Seneca III, the original has nowadays found its niche in the world of flight training, where loads (usually just a student + instructor) are never such that its lack of performance becomes an issue… even on only one engine. Cheap to buy, often with comprehensive avionics setups and big & complex enough to give the student an idea of what it’s actually like to handle an airliner, they can be a realistic alternative to Seminoles and Beech Duchesses, with F-BTMH itself flying in that role with the Sky Explorer flight school of Aix-en-Provence.

To make it even better, it is also only the third of its type I’ve ever seen, alongside the even older YL-ATB and Croatia’s own 9A-LEM. Ironically, given my fascination with it, I now have more photos of the rarest Seneca mark than I do of the common-as-trees Seneca III or the still-in-production Seneca V!

Looking quite cool in the fading light at Dubrovnik. Other interesting bits about F-BTMH are the baggage door window (which became standard only on the Seneca III, but was offered as a retrofit on the original and Seneca II) – and the fact that it has carried its identity since new, not something you see often in GA!


3. Beech 58P Pressurized Baron • N333RF

Third plane’s the charm however – not only for being my first Pressurized Baron, but also for being the only pre-G58 model I’ve ever seen in the metal (Barons of any sort are a pretty rare sight over here in SE Europe)…

It may not be the prettiest twin out there… but that classic teardrop shape is hard to miss on any apron! Developed in 1969 out of the original (and quite pudgy) model 55, the 58 received a 10″ extension of the nose, larger cowls for its more powerful 285 HP IO-520 engines, and a slightly wider wheelbase – all of which contributed to its famous regal stance. Other mods include redesigned cabin windows, split cabin doors on the right side of the fuselage, and a cleaner, re-profiled and relocated panel

The most advanced evolution of Beech’s hard-to-kill twin, the 58P was part of a double act with the unpressurized 58TC, both of which were intended to bolster the type’s sales prospects in the face of new designs from Cessna and Piper. Conceived in early 1973, the 58P ended up being the “marketing department’s airplane”, since it was pushed into development over the objections of the company’s engineering circles, who felt that Beech already had a perfectly adequate high-performance pressurized six-seater – the stunning model 60 Duke. Whats more, at the time the Duke was still holding its own against the only realistic competitor in this segment – Cessna’s 421 Golden Eagle – so it was felt that a pressurized Baron would just undercut the Duke’s sales for no tangible gain. However, strongly positive feedback from sales personnel across the US eventually prevailed, and work soon started on turning the already capable 58 into a Mini Me Duke.

Flying for the first time on 16 August 1973 in the form of a development prototype, the new 58P – as certified in 1974 – was powered by twin Continental TSIO-540-L engines developing 310 HP, whose massive turbochargers could supply enough high pressure air to give a 25,000 ft ceiling, power the pneumatic de-ice boots on the wing and horizontal stabilizer AND pressurize the cabin to a maximum 3.7 psi cabin differential. At the type’s usual cruising altitude of 18,000 ft, the latter translated into a very comfortable 7,700 ft cabin altitude (round about what you get on most airliners) – or a tolerable 11,900 ft at the 25,000 ft ceiling.

At this maximum altitude, the 58P could do 213 kts | 394 km/h in high speed cruise, which doesn’t sound all that impressive compared to the 200 kts | 370 km/h of the stock 58 – and on the original 285 HP engines to boot, well before the 1984 upgrade to 300. However, the stock model achieved this at a pretty low 7,000 ft, well below many safe altitudes in the Western US and Alpine Europe. So, despite objectively being some 75-80% of the way to the bigger and more comfortable Duke, as it went on sale in 1976, the 58P sold 83 examples in the first year alone – not a big number on its own, but quite a success for that market segment.

Despite a number of changes under the skin, from the outside the 58P is, at a glance, almost indistinguishable from the regular model. The only major giveaways are the additional scoops and vents on the cowls – and a single cabin door on the left side, relocated there to avoid creating a structural weak spot and undue pressurization stress in tandem with the crew door

Meanwhile, as test flying and certification were being wrapped up, Beech executives realized that they could use the work done on the 58P to try and break into another niche: unpressurized twins, where Cessna’s 401/402/411 and the Piper Turbo Aztec had cornered the market. To this end, they created the 58TC, which was in essence a standard 58 fuselage and wings mated to the complete engine installation of the 58P, rather than being a 58P with the pressurization system removed (so it retained the right side cabin door). The only other major difference to the standard model were equipment levels; since the 58TC could fly far higher than the stock 58P, it was equipped as standard with the de-icing system, and sported more cabin amenities and an extended IFR cockpit setup. Long range fuel tanks were also a very common option, to cater for the TSIO-520’s higher thirst.

In 1979, both the P and TC received an engine upgrade, swapping the original L model engine for the more potent TSIO-520-WB, now developing 325 HP. The upgrade also saw the P’s maximum pressure differential increase to 3.9 psi, and the top speed to jump slightly up to 216 kts | 400 km/h.

Given the number of unpressurized turbocharged twin types still flying today – Senecas, Cessna T303s, Turbo Aztecs and the like – one would have expected that the 58TC would also be a sales success. Despite being considerably cheaper, less complicated to operate and easier to maintain than the P, the TC was a complete flop, with just 151 sold before production stopped in 1982. While it was easier to live with, it was still more expensive to buy and fuel than its rivals, and despite having roughly the same performance as the P, it did not provide the same level of passenger comfort. As a consequence, the P would outsell it nearly three-to-one, with 495 built by the time production ended in 1986 during the big GA slump.

N333RF itself is an early 1977 example sporting the serial TJ-92, which says it is the 92nd P-Baron made (prototypes included). A quick search online revealed that it had been put on sale in the States back in mid-2020, and the fact that it has found its way to Dubrovnik means it has likely found a new home somewhere in Europe…

It’s not just the shape… it’s also the correct “brown & browner” 70s paint scheme. Despite being an early model, N333RF has been retrofitted with the WB engine by RAM Aircraft, and also sports the optional 196 USG | 742 l long range fuel tanks. Other stuff includes the Garmin GNS530 + 430 moving-map GPS units, the Avidyne Flight Max EX500 MFD, a Bendix King ART161A weather radar and a dated – but still perfectly adequate – Collins AP-107 autopilot

4. Cessna 414 RAM VI • N414SB

Compared to the 58P, the final aircraft for today was a far bigger sales success, with some 1,070 sold… but many people will still struggle trying to identify it. One of the many designs churned out by Cessna during its 60s and 70s market fight with Piper and Beech, the 414 is essentially a quick-and-cheap mishmash of parts from the earlier models 401 and 425, and was primarily intended to take over the Golden Eagle’s job of keeping the Beech Duke in check.

Despite its bright paint job, N414SB is the type of aircraft you could lose on any bigger apron. I myself had initially called it as a 401 or 402, until I had gotten close enough to read the tip tank…

Though it would eventually win and by quite a margin – outselling the Duke’s 596 by almost two-to-one – its lackluster looks and unglamorous origins had quickly made it fall behind the sofa of public consciousness. This, however, does not mean it was a bad aircraft; on the contrary, it would prove to be as tough, capable and long-lived as the 58P, and would in later years become a favorite for third-party upgrades.

N414SB itself – of 1970 vintage & serialled 414-0092 – thus sports the RAM Series VI mod, which sees the original Continental TSIO-520-J engines of 310 HP replaced by TSIO-520-NB units developing a more meaty 335 HP. Apart from a 10-15 knot bump in cruising speeds (depending on the regime), the upgrade also includes a 415 lbs | 188 kg increase in payload – and, despite the added mass, an increase in climb speeds from 1,580 to 1,900 FPM on both engines, and 240 to 310 on just the one.

The Series VI upgrade normally also includes new scimitar-type propellers – but the owner(s) of N414SB had decided to go one up and fit Hartzell’s odd-looking Q-Tip units. Occasionally mistaken for propstrike damage, the Q-Tip shape in essence behaves just like a winglet, increasing efficiency and thrust while reducing noise, vibration and fuel consumption. However – as is the case with Mazda and its pushing of the Wankel engine – the Q-Tip’s actual gains (particularly on a cost/benefit basis) are still fiercely debated online, with discussions on forums often growing quite heated and passionate…

Sources:

Photo File – Flying In The Time Of Corona: Croatian GA Snapshots

By me
All photos me too, copyrighted

Due to reasons beyond my control (to put it mildly), I had quite a bit of free time on my hands this summer, which I decided to spend – like in the good ol’ days – by enjoying the scenery at various airports and airfields throughout the land. While one would have assumed that the lockdown (pretty mild in Croatia, but still keenly felt) would have had a negative impact on GA ops, the truth of the matter was that the number of aircraft buzzing about had actually increased – which meant that there were always plentiful photo opportunities wherever you went. A perfect setting then to get the camera out and see what I’d been missing over the winter… 😀

If you’re sad for the demise of Cold War underground air bases and bomb-proof aircraft hangars, don’t despair – Dubrovnik Airport (DBV/LDDU) has something for you! Not so much a Hardened Aircraft Shelter as a “Hardened Vehicle Garage”, the brand new semi-subterranean storage depot along the airport’s northwestern perimeter may seem like an unlikely place for aircraft photography… but as you can see, it pulls it off nicely!

Concentration at 120% as a young colleague readies his ship for a late afternoon training flight. Somewhat fortunately, this student-weary veteran of the Croatian Aviation Training Center – to whose weariness I myself had actively contributed a decade ago – will soon give way to…

… this. It’s startup may not have been as smoky as I would have liked (thankfully for the engine!), but it was nevertheless worth frying like sushi on the superheated apron to catch my first ever Duchess. Conceived on the same train of thought as the Seminole, the 76 was always a typical Beech design: built up to a standard rather than down to a price. Unfortunately, that made it quite expensive to buy and maintain, meaning that only 437 would ever be produced… barely half the Seminole’s ~930 (and counting). Ironically, being a replacement for 9A-DZG means that Walter Beech may still have a tiny last chuckle!

Number 2 for departure after three incoming arrivals, holding short on a parallel runway being used as a taxiway since it is too close for proper simultaneous operations… this is not Lučko – it’s Gatwick on grass!

Of course he’s happy – he’s going flying… and on an aircraft he built himself from the wheels up, and from parts of half a dozen factory Super Cubs!

The 70s are back – as an airplane. While this “50 Shades Of Brown” interior may not be all that hot by today’s style standards, it is nevertheless so throwback cool that it warrants a “10/10 would sit” rating! (it also helps that the entire cockpit is crisp, clean, neat – and fully original, with the same trim it had back in 1986 when it rolled off the production line) (and yes, despite the D- reg, this machine is a fully-fledged local)

Even on its own territory, the Reims Rocket is a shy and reclusive species, easily frightened by noise and sudden movement. Because its colorful plumage makes it easy prey for photographers, it has evolved the ability to escape and hide quickly and without warning; always approach it silently and patiently, using local terrain and foliage for cover whenever possible…

And finally, one little Cherokee I’m VERY happy to see again! Covered previously in two some of my earliest posts here (part #1 and #2), DJZ is the sole “pre-Warrior” PA-28 in the country, and had years & years ago been based at Dubrovnik (DBV/LDDU). Unfortunately, a while back it had fallen on some hard times and was left to rot in the corner of the apron. Thankfully, about a year ago it had been brought to Medulin Airfield (LDPM) in Istria, where it is now undergoing a complete restoration – and will be happily flying already in early 2021!

Tech/Photo Report – More Multi-Engine (Instrument) Fun

By me
All photos me too, copyrighted

On the face of it, July was probably not the most enjoyable of times to have my Multi-Engine Class training. The summer’s record temperatures – once peaking at a toasty +55 Centigrade in the cockpit – really did us no favors at the best of times; and had certainly not done justice to our little, slightly underpowered Piper Seminole :). So keen to see what it – and I – could actually do given some favorable weather conditions, I was very much looking forward to my Multi-Engine Instrument training, slated to take place in the much more agreeable near-zero temperatures at the beginning of November…

Now, as mentioned in a previous post on the topic, flying a twin engine airplane is fairly easy – provided both engines are operating :D. When one decides to quit however, things can become interesting – still safe, but quite interesting nonetheless. The biggest and most immediate problem in this situation is the sudden lack of power – as my flight instructor had graphically put it, when you lose an engine, you don’t lose just 50% of the available power; in effect it’s as if you lose 75%, since you now also have the dead weight – and additional drag – of the inoperative engine. Specifically, it’s this drag that causes the biggest control problems: with one engine “dragging behind” and the other pulling forward, the airplane wants to yaw and bank around its center of gravity into the inoperative engine, a tendency that has to be neutralized by liberal application of opposite rudder (and possibly some aileron) :). With the rudder now deflected (at low speeds often fully), the drag increases yet again, forcing the airplane down to its speed for minimum drag (and hence minimum required power) – a flight regime that, especially during landing, requires considerable planning ahead…

When simulated for training purposes, this One Engine Inoperative situation also makes the aspiring student appreciative of the simplicity of the turboprop engine – especially if you’re flying a piston-engined Seminole, an aircraft seemingly designed to make your life then and there as complicated as possible :D. Given that many in-flight engine shutdowns are caused by small, easily-rectifiable problems rather than catastrophic failures, each aircraft has a specific set of “diagnostic” procedures the pilot needs to run through to verify whether one of the engines has indeed failed, identify the inoperative engine and – if all else fails (pun intended) – secure it. On the 100-cockpit-lever Seminole (though they’re broadly similar for other piston twins) these include:

  • moving both mixture levers forward into the Full Rich position – the idea being that maybe you’d forgotten to move them forward during descent and the fuel/air mixture had become too weak for the engine to run
  • moving both propeller levers forward. This may seem a bit odd given that one of the engines has failed or is in the process of doing so, but until you’re certain WHICH one it is, better have both props at their maximum
  • moving the throttles all the way to the Maximum Continuous Power setting, for the same reason
  • turning on the carburetor heaters (or opening the alternate air ports on fuel-injected engines) to see whether the problem is simply ice blocking the carburetor/air intake
  • turning on both auxiliary fuel pumps, in case the main engine-driven pumps had failed and no fuel is being drawn from the tanks
  • and then looking around to see whether you’d accidentally shut something off, like the fuel selectors or magnets

If once you’re done the inoperative engine still refuses to cooperate, you identify it and proceed with securing it – which is basically the reverse procedure to the above: close the throttle, feather the prop, cut the mixture and shut everything down related to the engine, such as magnetos, fuel pumps, alternators and the like… you may also have noticed that the above procedure is performed on both engines simultaneously; the rationale is that whatever plagues one engine can easily happen to the other – which is especially likely if the root cause is icing or incorrectly set mixtures.

Despite being a “screenfull”, out on the Seminole this procedure is pretty straightforward and comparatively simple – dare I say fun 😀 – in visual conditions: conditions where you always have a visible horizon and ground contact, and can afford to drift a bit off course while you get the hang of the airplane. In instrument conditions though that luxury is gone, with the only spatial reference you have provided by the instruments – which implies, in addition to everything stated above, continual scanning of the primary flight and navigation instruments and maintaining an image of your position and attitude in your head. Now factor in an ILS or VOR/DME approach and you have a party :D.

Given that during these flights I was want for a few more arms, I did not have the liberty to photograph at will as I usually do, so – after having drifted off course quite badly with this post 😀 – I thought I’d just throw together a small photo gallery of the ME/IR “tools of the trade”… 🙂

For us "modular course" types, the ME/IR rating also includes three hours on "the simulator" - our good ol', not-entirely-trusty BT220, produced by BT Simulations of Austria :). Though universally referred to as a simulator, the BT220 is actually a "Flight, Navigation and Procedures Trainer II" (FNPT II) - to be a fully fledged simulator, it'd have to be "full motion", that is be able to pitch, yaw and bank like the real aircraft

The copilot's view with the seats moved fully back. Representing (broadly) the Piper Seneca III, the BT220 has everything you really need for any sort of IFR training: an HSI and CDI, two ADFs, two DMEs - and an extensive list of failure options 😀

Cooling down after a grueling two-hour training session. Far from being just a cheap replacement for the real aircraft, "the sim" allows for very useful training for real life emergencies: during this session, we had multiple engine failures, system failures, instrument malfunctions, electrical and fuel issues, landing gear failures - not to mention weather related issues such as heavy icing, heavy turbulence, gusting wind and low-visibility operations. Though we'll probably never encounter such a pessimistic combination of conditions out in real life, the lessons learned from them can do wonders when something really does go wrong on the actual airplane...

Dripping wet after an hour's worth of flying though rain while shooting some ILS approaches. Apparently all of my instrument flights are doomed to either cloud and low visibility, heavy turbulence or pouring rain 🙂 (fitting, isn't it?)

At least we gave the Seminole a thorough - and thoroughly ecological 🙂 - wash! She was clean as a whistle when we were done!

Back in the dry in the University's hangar. Like many small twin-engine Pipers, the Seminole is equipped with contra-rotating propellers, eliminating the dreaded "critical engine" and all of its associated negative effects (at the expense of more costly maintenance)

9A-DMG, the Cessna 172N on which I'd passed my Single-Engine Instrument checkride, framed by 9A-DZG on which I'd passed my Multi-Engine Class, Instrument and CPL checkrides :). If they were people, I'd be thanking them now 😀

And finally, honorable mentions go to two photos I’ve snapped in flight with my mobile phone… due to a somewhat “expedited” departure from Pleso airport, I’d left my camera in the luggage compartment and couldn’t get at it in flight – so I had to use whatever I had at hand… 🙂

There really are very few things that are as enjoyable as a flight above the cloud deck :). Cruising at 6,000 ft in silky smooth air towards Maribor (ICAO: LJMB), the autopilot keeping the Seminole straight and true, and the scenery going from great to awesome!

Moments before we break into the cloud deck at 140 knots on our return trip...

Short Photo Report – Multi-Engine Fun

By me
All photos me too, copyrighted

Having been warming the chair with my ATPL studies for a good part of the month – not the most fulfilling of activities I must say, especially since it’s 35 Centigrade outside… and probably more inside – I was naturally through the roof when my name finally came up on the multi-engine training roster :). Eager to fly (and photograph :D) any day of the week, I was doubly excited this time, since I’d finally get to try my hand at the university’s sole Piper Seminole – in a nutshell my first Piper, first low-wing and first twin 🙂 (greetings from fixed-gear Cessna land!).

The aircraft in question is 9A-DZG, a trusty 1978 normally-aspirated Seminole that has pretty much passed through the hands of almost every multi-engine qualified pilot in Croatia in the last few years. Powered by two 180 HP Lycoming O-360s, it may not be the most exciting or high performing aircraft in the world – but after half a dozen Skyhawks, it is pretty much the top of the line :D.

Training-wise, first up was the Multi Engine Class rating, done under VFR (thankfully we’ve been having some excellent VMC lately). This pretty much revolves around the most important skills multi-engine aircraft require – the ability to fly on only one of those engines. As well as zone work – to familiarize ourselves with the aircraft and its handling characteristics – the course includes a broad range of “one engine inoperative” (OEI) situations, such as in cruise, during landing, during takeoff, after takeoff and on go-around. Lacking any navigation elements (such as IFR flying), we could have done the course at Lučko or Pleso – but given that they do have a lot of traffic nowadays, and OEI ops tending to disrupt the normal traffic flow, we decided to head somewhere else, most often the coast :).

To compensate for the increased transit time, time we could spend on honing our OEI skills, we usually flew in pairs of two students, where one would fly outbound and do his/her training, after which we’d land and swap places. The other student would then do a similar set of exercises and fly the return leg, while the backseater would observe and learn… and in my case, snap a photo or two :D.

Heading for Rijeka (LDRI) on the coast, climbing to 5500 ft. Given the recent heatwave, forming cumulus clouds were a common occurrence. Many never developed far enough to carry any rain, but the few that did ended up wreaking havoc all round... (at Lučko two Skyhawks - including one I flew on my IFR course - were damaged when the sudden wind tipped them onto their wingtips)

A busy view up front as we near the first substantial clouds near the Velebit mountain range. Blowing perpendicular to it, the week's north-easterly wind was the perfect trigger for the formation of vertical clouds

On approach to Rijeka's RWY 32. Situated on Krk, one of the largest islands on the Adriatic Sea, the airport's comparatively low traffic volume, a long runway and an abundance of radionavigation aids (not to mention it being just 30 minutes flight away) makes it a popular training destination 🙂

On any of the Cessnas I normally fly, this sight would be cause for immediate - and considerable! - alarm :D. However here, with the other engine still pulling, you can breathe a bit easier :). Normally, engine-out training is simulated - with the throttle on one engine retarded - but in some cases the instructor will actually shut the engine down completely. The propeller is then feathered (turned parallel with the airflow) to keep the drag - and all of its unwanted side-effects - down to a minimum. Also, the small mirror on the cowl is provided for the pilot to visually confirm that the nose gear is down (generally, if the nose gear is down, probably the mains are as well).

Encountering a spot of rain on the way back with me at the controls. Photo courtesy of the aircraft's autopilot :D. While I generally prefer hand-flying - sharpens the skills - a (finally) functioning autopilot was just too good an offer to pass up 😀

Still more working atmosphere on day 2 :). Flying back home from Zadar along the islands, the long - but far more pleasant - way around. Capitalizing on the fine weather, the military had activated several of its training zones - which basically cover the entire Velebit range - so to avoid close encounters with supersonic MiG-21s, we were routed around them

Aaah, the sea! Always a beautiful sight for us landlubbers :).

DZG ticking itself cool - as much as it could have, given it was +40 on the apron - at Banja luka airport in neighboring Bosnia :). For our final multi-engine class flight, we'd decided to go international - which, to add to a list of firsts, this was my first ever international flight as pilot :). Succumbing to the traditional culinary delights of Bosnia - "čevapi" for any locals who might read this 😀 - we decided to stay in town for lunch. In the end, this turned out to be by far the tastiest training flight I've ever had!

Some more dramatic weather at 6,000 ft on our flight back to Zagreb